p-group, metabelian, nilpotent (class 2), monomial
Aliases: C43⋊13C2, C42⋊37D4, C24.124C23, C23.760C24, C4⋊1(C42⋊2C2), C22.470(C22×D4), (C22×C4).1266C23, (C2×C42).1095C22, (C22×D4).315C22, C24.C22⋊186C2, C24.3C22.81C2, C23.65C23⋊171C2, C2.C42.455C22, C2.60(C22.26C24), C2.114(C23.36C23), (C2×C4).689(C2×D4), (C2×C42⋊2C2)⋊30C2, (C2×C4).530(C4○D4), (C2×C4⋊C4).563C22, C2.26(C2×C42⋊2C2), C22.601(C2×C4○D4), (C2×C22⋊C4).369C22, SmallGroup(128,1592)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C43⋊13C2
G = < a,b,c,d | a4=b4=c4=d2=1, ab=ba, ac=ca, dad=ac2, bc=cb, dbd=b-1, dcd=a2c-1 >
Subgroups: 468 in 258 conjugacy classes, 108 normal (9 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊2C2, C22×D4, C43, C24.C22, C23.65C23, C24.3C22, C2×C42⋊2C2, C43⋊13C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C42⋊2C2, C22×D4, C2×C4○D4, C2×C42⋊2C2, C23.36C23, C22.26C24, C43⋊13C2
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 36 26 47)(2 33 27 48)(3 34 28 45)(4 35 25 46)(5 58 23 15)(6 59 24 16)(7 60 21 13)(8 57 22 14)(9 62 54 17)(10 63 55 18)(11 64 56 19)(12 61 53 20)(29 43 52 39)(30 44 49 40)(31 41 50 37)(32 42 51 38)
(1 15 10 50)(2 16 11 51)(3 13 12 52)(4 14 9 49)(5 63 37 36)(6 64 38 33)(7 61 39 34)(8 62 40 35)(17 44 46 22)(18 41 47 23)(19 42 48 24)(20 43 45 21)(25 57 54 30)(26 58 55 31)(27 59 56 32)(28 60 53 29)
(2 11)(4 9)(5 43)(6 22)(7 41)(8 24)(13 50)(14 16)(15 52)(17 35)(18 63)(19 33)(20 61)(21 37)(23 39)(25 54)(27 56)(29 58)(30 32)(31 60)(34 45)(36 47)(38 44)(40 42)(46 62)(48 64)(49 51)(57 59)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,36,26,47)(2,33,27,48)(3,34,28,45)(4,35,25,46)(5,58,23,15)(6,59,24,16)(7,60,21,13)(8,57,22,14)(9,62,54,17)(10,63,55,18)(11,64,56,19)(12,61,53,20)(29,43,52,39)(30,44,49,40)(31,41,50,37)(32,42,51,38), (1,15,10,50)(2,16,11,51)(3,13,12,52)(4,14,9,49)(5,63,37,36)(6,64,38,33)(7,61,39,34)(8,62,40,35)(17,44,46,22)(18,41,47,23)(19,42,48,24)(20,43,45,21)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29), (2,11)(4,9)(5,43)(6,22)(7,41)(8,24)(13,50)(14,16)(15,52)(17,35)(18,63)(19,33)(20,61)(21,37)(23,39)(25,54)(27,56)(29,58)(30,32)(31,60)(34,45)(36,47)(38,44)(40,42)(46,62)(48,64)(49,51)(57,59)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,36,26,47)(2,33,27,48)(3,34,28,45)(4,35,25,46)(5,58,23,15)(6,59,24,16)(7,60,21,13)(8,57,22,14)(9,62,54,17)(10,63,55,18)(11,64,56,19)(12,61,53,20)(29,43,52,39)(30,44,49,40)(31,41,50,37)(32,42,51,38), (1,15,10,50)(2,16,11,51)(3,13,12,52)(4,14,9,49)(5,63,37,36)(6,64,38,33)(7,61,39,34)(8,62,40,35)(17,44,46,22)(18,41,47,23)(19,42,48,24)(20,43,45,21)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29), (2,11)(4,9)(5,43)(6,22)(7,41)(8,24)(13,50)(14,16)(15,52)(17,35)(18,63)(19,33)(20,61)(21,37)(23,39)(25,54)(27,56)(29,58)(30,32)(31,60)(34,45)(36,47)(38,44)(40,42)(46,62)(48,64)(49,51)(57,59) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,36,26,47),(2,33,27,48),(3,34,28,45),(4,35,25,46),(5,58,23,15),(6,59,24,16),(7,60,21,13),(8,57,22,14),(9,62,54,17),(10,63,55,18),(11,64,56,19),(12,61,53,20),(29,43,52,39),(30,44,49,40),(31,41,50,37),(32,42,51,38)], [(1,15,10,50),(2,16,11,51),(3,13,12,52),(4,14,9,49),(5,63,37,36),(6,64,38,33),(7,61,39,34),(8,62,40,35),(17,44,46,22),(18,41,47,23),(19,42,48,24),(20,43,45,21),(25,57,54,30),(26,58,55,31),(27,59,56,32),(28,60,53,29)], [(2,11),(4,9),(5,43),(6,22),(7,41),(8,24),(13,50),(14,16),(15,52),(17,35),(18,63),(19,33),(20,61),(21,37),(23,39),(25,54),(27,56),(29,58),(30,32),(31,60),(34,45),(36,47),(38,44),(40,42),(46,62),(48,64),(49,51),(57,59)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4AB | 4AC | ··· | 4AH |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 2 | ··· | 2 | 8 | ··· | 8 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 |
kernel | C43⋊13C2 | C43 | C24.C22 | C23.65C23 | C24.3C22 | C2×C42⋊2C2 | C42 | C2×C4 |
# reps | 1 | 1 | 6 | 3 | 3 | 2 | 4 | 24 |
Matrix representation of C43⋊13C2 ►in GL6(𝔽5)
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,1,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,2,0,0,0,0,4,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,4,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;
C43⋊13C2 in GAP, Magma, Sage, TeX
C_4^3\rtimes_{13}C_2
% in TeX
G:=Group("C4^3:13C2");
// GroupNames label
G:=SmallGroup(128,1592);
// by ID
G=gap.SmallGroup(128,1592);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,568,758,184,2019,80]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a*c^2,b*c=c*b,d*b*d=b^-1,d*c*d=a^2*c^-1>;
// generators/relations